Publication Cover
Numerical Heat Transfer, Part A: Applications
An International Journal of Computation and Methodology
Volume 56, 2009 - Issue 3
578
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of a Synthetic Jet-Based Electronic Cooling Module

, &
Pages 211-229 | Received 13 Nov 2008, Accepted 16 Jun 2009, Published online: 10 Sep 2009
 

Abstract

This article presents a numerical study of an electronic cooling module using a periodic jet flow at an orifice with net zero mass flux, known as a synthetic jet. The two-dimensional time-dependant numerical simulation models the unsteady synthetic jet behavior, the flow within the cavity and the diaphragm movement while accounting for fluid turbulence using the shear-stress-transport (SST) k-ω turbulence model. Computations are performed for a selected range of parameters and the boundary conditions to obtain the heat and fluid flow characteristics of the entire synthetic jet module. The numerical simulation aptly predicts the sequential formation of the synthetic jet and its intrinsic vortex shedding process while accurately illustrating the flow within the cavity. It is indicated that the thermal performance of the synthetic jet is highly dependant on the oscillating diaphragm amplitude and frequency. At the heated surface, this jet impingement mechanism produces a very intense localized periodic cooling effect that reaches a peak with a time lag relative to the top displacement position of the diaphragm. The overall heat transfer rate of the synthetic jet module is about 30% better than an equivalent continuous jet. When compared to pure natural convection the enhancement varies from 20 to 120 times in the range of parameters studied. The study clearly identifies the outstanding thermal potential of the synthetic jet module for intense electronic cooling applications and its ability to operate without additional fluid circuits.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.