56
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental and numerical study of mixed convection heat transfer in a vented cavity partially filled with a porous medium: Effects of reynolds and rayleigh numbers on Nusselt number and flow regimes

, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 17 Aug 2023, Accepted 24 Feb 2024, Published online: 10 Mar 2024
 

Abstract

This article presents a comprehensive investigation of mixed convection flow and heat transfer within a vented, partially side-heated cubical cavity, incorporating a porous medium with low-conductivity square-shaped inclusions. The study encompasses an extensive range of Rayleigh numbers (106 < Ra < 6 × 106) and Reynolds numbers (200 < Re < 4000) while maintaining a fixed Prandtl number of Pr = 0.71. This investigation spans over three decades in Richardson numbers (Ri = Ra/(Re2 Pr)), aiming to discern the interplay between the Nusselt number, Nu, and the Richardson number. Our understanding of Nusselt number dependencies is enhanced by combining PIV measurements of heat transfer and velocity fields with temperature field data. The study uses both experimental and numerical PIV data, incorporating porous media representation to reveal heat transfer scaling with both Reynolds and Rayleigh numbers. Computational Fluid Dynamics (CFD) methods are used to explore the complex physical behavior under different flow conditions. Three distinct flow and heat transfer regimes have been identified, predicated upon the Richardson number. For Ri < 25, the flow structure and Nusselt number exhibit similarities with pure forced convection, where the Nusselt number scales as Nu ∼ Re0.6, independent of the Rayleigh number. Conversely, for Ri > 70, natural convection dominates the vicinity of the heating wall, rendering the Nusselt number less sensitive to Reynolds number variations and predominantly dictated by the Rayleigh number. Notably, the intermediate regime, ranging from 25 < Ri < 70, witnesses a competition between upward-directed natural convection flow at the heating wall and downward-directed forced flow, culminating in a minimum effective Nusselt number.

Disclosure statement

The authors report there are no competing interests to declare.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 716.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.