Publication Cover
Numerical Heat Transfer, Part B: Fundamentals
An International Journal of Computation and Methodology
Volume 63, 2013 - Issue 4
376
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

The Local Radial Basis Function Collocation Method for Solving Two-Dimensional Inverse Cauchy Problems

&
Pages 284-303 | Received 15 Nov 2012, Accepted 15 Jan 2013, Published online: 15 Apr 2013
 

Abstract

In this study, inverse Cauchy problems, which are governed by the Poisson equation, inhomogeneous Helmholtz equation, and inhomogeneous convection-diffusion-reaction equation, are analyzed by the local radial basis function collocation method (LRBFCM). In the inverse Cauchy problem, overspecified boundary conditions are given along part of the boundary and no boundary condition is imposed on the rest of the boundary. The inverse problems are generally very unstable and ill-posed, so the inverse Cauchy problem is very difficult to solve stably using any numerical scheme. The LRBFCM is one kind of domain-type meshless method and can get rid of mesh generation and numerical quadrature. In addition, the localization in LRBFCM can reduce the ill-conditioning problem and full matrix. Therefore, in this study the LRBFCM is adopted to analyze two-dimensional inverse Cauchy problems. Five numerical examples are provided to verify the proposed meshless scheme. In addition, the stability of the proposed scheme is validated by adding noise into boundary conditions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 486.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.