Publication Cover
Radiation Effects and Defects in Solids
Incorporating Plasma Science and Plasma Technology
Volume 169, 2014 - Issue 8
214
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Pulse-induced mechanoluminescence of ultraviolet-irradiated SrAl2O4:Eu,Dy phosphors

&
Pages 655-668 | Received 28 Aug 2013, Accepted 15 May 2014, Published online: 12 Jun 2014
 

Abstract

The SrAl2O4:Eu,Dy phosphors prepared by solid state reaction technique in a reduced atmosphere of 95% Ar+5% H2 exhibit very intense mechanoluminescence (ML) which can be seen in daylight with naked eye. When the phosphors are deformed by the impact of a low-power electric hammer, initially the ML intensity increases with time, attains a maximum value and then decreases with time. After the threshold pressure, the peak of ML intensity Im and the total ML intensity IT increase with the increasing value of the impact pressure. For the ML excited by the pressure pulse of short duration, two decay times of ML are observed; however, for the ML excited by the pressure pulse of long duration, only one decay time is observed. The ML intensity decreases with successive applications of pressure on SrAl2O4:Eu,Dy phosphors. For the low applied pressure in the range below the limit of elasticity recovery of ML intensity takes place when the sample is exposed to ultraviolet (UV) light. This fact indicates that the vacant traps produced during the application of pressure pulses get filled during the exposure of the sample to UV light. The ML in the elastic region of SrAl2O4:Eu,Dy phosphors can be understood on the basis of the piezoelectrically induced detrapping model. The non-irradiated SrAl2O4:Eu2+,Dy3+ phosphors exhibit ML during the fracture of the compact mass of phosphors whose ML intensity is less when compared to that of the UV-irradiated compact masses. The ML induced by pressure pulses may be useful for determining the magnitude and rise time of unknown pressure pulses and to determine the lifetime of charge carriers in shallow traps.

Acknowledgements

The authors are thankful to Dr N. Suryamurthy of Radiological Safety Division, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamilnadu, India for providing the facility for the preparation of phosphors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,076.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.