287
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis and characterization of Co (II) and Fe (III) Schiff base complexes grafted onto mesoporous MCM-41: A heterogeneous and recyclable nanocatalysts for the selective oxidation of sulfides and oxidative coupling of thiols

, &
Pages 1388-1395 | Received 02 Apr 2016, Accepted 28 Jun 2016, Published online: 11 Aug 2016
 

GRAPHICAL ABSTRACT

ABSTRACT

Novel organic–inorganic hybrid heterogeneous catalysts containing cobalt(II) and iron(III) Schiff base complexes, grafted on the internal surface of MCM-41 pores were prepared by introducing a metal salt into a mesoporous silica functionalized with a Schiff base ligand. The chemical and physical properties of the catalysts were investigated by BET, TGA, XRD, FT-IR, and TEM techniques. These complexes were found to be efficient, selective catalysts for the oxidation of various sulfides to sulfoxides and oxidative coupling of thiols to their corresponding disulfides with urea hydrogen peroxide in excellent yield at room temperature. The designed catalytic system prevents effectively the overoxidation of sulfides and thiols to sulfoxides and sulfones, respectively. Also the heterogeneous catalysts can be recovered easily and reused many times without significant loss of activity and selectivity.

Funding

The authors thank the research facilities of Ilam University, Ilam, Iran, for financial support of this research project.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,235.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.