148
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

A green one-pot three-component synthesis of α-aminophosphonates under solvent-free conditions and ultrasonic irradiation using Fe3O4@SiO2-imid-PMAn as magnetic catalyst

, , &
Pages 530-537 | Received 25 Jun 2016, Accepted 28 Nov 2016, Published online: 01 Feb 2017
 

GRAPHICAL ABSTRACT

ABSTRACT

An efficient and environment friendly process for the synthesis of α-aminophosphonates has been devised. Through a one-pot three-component condensation of various aldehydes, amines, and triethyl phosphite in the presence of Fe3O4@SiO2-imid-PMAn nanoparticles as magnetic catalysts under solvent-free conditions and ultrasonic irradiation, α-aminophosphonates were obtained with excellent yields. The reactions under solvent-free conditions at room temperature are compared with the ultrasonic-assisted reactions. This new procedure has notable advantages such as short reaction time, excellent yields, easy purification, and the absence of any tedious workup or purification. The aforementioned catalyst could be easily recovered by an external magnetic field and can be reused for six consecutive reaction cycles without significant loss of activity. In addition, SEM and DLS of the catalyst after the reaction cycle were investigated.

Funding

The authors are grateful to the Council of Iran National Science Foundation and University of Shiraz for their unending effort to provide financial support to undertake this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,235.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.