496
Views
33
CrossRef citations to date
0
Altmetric
Original Articles

Multiobjective Optimization of Experimental and Simulated Residual Stresses in Turning of Nickel-Alloy IN100

&
Pages 835-841 | Received 29 May 2012, Accepted 06 Jul 2012, Published online: 08 Jul 2013
 

Abstract

In this study, physics-based simulations are utilized to predict the forces and residual stresses induced during machining, and the results were validated using the experimental measurements. Physics-based simulations also involve uncertainty in the predicted values that can be represented as expected value and variance of the predictions. These predictions are inputted to a multiobjective optimization methodology to select the optimal machining parameters where competing or conflicting objectives constitute hurdles in the decision-making of the manufacturing plans. The objectives are chosen as related to residual stress measurements and predictions. Multiobjective particle swarm optimization (PSO) procedure is employed in optimizing process parameters. Objectives are solved for minimizing tensile residual stresses on the surface, maximizing peak compressive residual stresses, and minimizing the variance of these variables in order to increase certainty in the predictions. The optimum machining parameters corresponding to this multiobjective optimization are represented in both objective function and decision variable spaces.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.