265
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Effect of Magnetic Field on Properties and Element Distribution of Ni-Based WC Composite Coatings

, , , &
Pages 1253-1260 | Received 21 May 2015, Accepted 04 Jul 2015, Published online: 14 Jan 2016
 

Abstract

The Ni-based WC coatings enhanced by WC particle were fabricated on FV520B by plasma cladding device. The influence of magnetic force on the microstructure and performance of the coating was investigated. If the magnetic field does not exist, the microstructure of coating is a cluster of block-shaped structures; it is observably different from the dendritic and crumbling snowflake-like structures formed under transverse and longitudinal magnetic fields. The WC particles were distributed at the grain boundary. With the effect of longitudinal magnetic field, wear resistance and erosion resistance of coatings improved markedly. When axial magnetic field intensity came to 38 mT, the microhardness of coatings reached a maximum value, 720 HV0.2. Electron probe microanalyzer (EPMA) indicates the metallurgical combination at the interface and element interdiffusion happened between the coating and substrate.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 561.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.