428
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Significance of molecular chaperones and micro RNAs in acquisition of thermo-tolerance in dairy cattle

Pages 765-775 | Published online: 29 Oct 2020
 

Abstract

Ambient temperature is considered as the major abiotic factor which regulates body physiological mechanisms of all living creatures across the globe. Variation in ambient temperature which emulates thermoneutral zone culminates in heat stress. Heat stress has been emerged as major ultimatum to livestock’s growth, development, production and reproduction across the world. Livestock’s responds to the heat stress via different mechanisms such as behavioral, physiological, biochemical, endocrine and molecular mechanisms. Amongst the aforementioned mechanisms, molecular mechanism plays crucial role to achieve thermo-tolerance via expression of highly conserved family of proteins known as heat shock proteins (HSPs) across livestock species. HSPs serve as molecular chaperones to ameliorate the menace of heat stress in domestic species. In addition, microRNAs are small non-coding RNA which down regulates post-transcriptional gene expression by targeting various HSPs to regulate the thermoregulatory responses in livestock species. Despite of thermal adaptation mechanisms, heat stress breaches animal body homeostasis thereby depresses their production and productivity. Therefore, veterinary researches have been targeting to explore different repertoire of HSPs and microRNAs expression to counteract the rigors of heat stress thereby confer thermo-tolerance in livestock species. The present review highlights the significance of molecular chaperones and microRNAs in the acquisition of thermo-tolerance in dairy cattle.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Figure 1. Functional role of molecular chaperones in different cellular systems during heat stress.

Figure 1. Functional role of molecular chaperones in different cellular systems during heat stress.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.