Publication Cover
Integrated Ferroelectrics
An International Journal
Volume 66, 2004 - Issue 1
39
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

A Tunable Active Phase Shifter Using a Thin Film Ferroelectric Capacitor

, , &
Pages 153-161 | Received 01 Apr 2004, Accepted 01 Aug 2004, Published online: 12 Aug 2010
 

Abstract

This paper describes an active phase shifter with a large amount of variable phase. We propose a design that has second-order all-pass network characteristics and that uses a tunable ferroelectric capacitor. The transmitted phase is changed by varying the capacitance of a ferroelectric capacitor. A computer simulation is presented that shows that the network, even with markedly non-ideal transistors, can provide a true all-pass response over the frequency band of interest (100 MHz–400 MHz). These simulated results demonstrate an analog tunability of about 200° with a gain variation of about 3 dB at 300 MHz—when using a Ba0.96Ca0.04Ti0.84Zr0.16O3 (BCTZ) capacitor with a tunability of 2:1. The simulation performed at 300 MHz because the physical layout of the real life circuit will be done mostly with the discrete components. As the self resonance frequency of most of the discrete components lies in the few hundreds of MHz range, our preferred frequency is a practical one to deal with. The simulation also predicts a flat band gain of approximately 10 dB with ± 2 dB of gain ripple.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.