119
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Influence of Co-substitution on Structure and Electrochemical Performances of Li-rich Spinel LiMn2O4

, , , , , & show all
Pages 23-32 | Received 06 Aug 2104, Accepted 31 Dec 2014, Published online: 17 Aug 2015
 

Abstract

In this paper, the non-stoichiometric spinel LiMn2O4 was synthesized by solid-state reaction using Mn2O3 as Mn source, and the influence of Co-substitution on structure and electrochemical performances of spinel LiMn2O4 was researched. The structure was characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR), morphology was examined by scanning electron microscopy (SEM), and chemical composition of samples were analyzed by the energy-dispersive X-ray spectrum (EDX), while the doping dosage of Co element was measured by inductively coupled plasma (ICP). The results show that the Co-substituted Li1.03Mn2O4 samples display a single phase of cubic spinel structure, and have enhanced particle size uniformity and surface smoothness. The electrochemical performance tests show that the rate capability and cycling performances of Co-substituted samples are significantly improved compared with that of pristine Li1.03Mn2O4. The sample (Li1.03Mn0.85Co0.15O4) with 15 mol% of Co-substitution has discharge capacity of 106mAh·g−1 at 2C and shows an improved average capacity retention of 97.2% compared with that of the Li1.03Mn2O4 which shows 87.7% capacity retention after 50 cycles at 1C rate.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 2,157.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.