335
Views
28
CrossRef citations to date
0
Altmetric
Original Articles

The Tammes Problem for N = 14

&
Pages 460-468 | Published online: 20 Jul 2015
 

Abstract

The Tammes problem is to find the arrangement of N points on a unit sphere which maximizes the minimum distance between any two points. This problem is presently solved for several values of N, namely for N = 3, 4, 6, 12 by L. Fejes Tóth (1943); for N = 5, 7, 8, 9 by Schütte and van der Waerden (1951); for N = 10, 11 by Danzer (1963); and for N = 24 by Robinson (1961). Recently, we solved the Tammes problem for N = 13. The optimal configuration of 14 points was conjectured more than 60 years ago. In this article, we give a solution for this long-standing open problem in geometry. Our computer-assisted proof relies on an enumeration of the irreducible contact graphs.

2000 AMS Subject Classification::

Notes

1The authors of this program are Gunnar Brinkmann and Brendan McKay.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 360.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.