419
Views
60
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis of Carboxymethyl Cellulose Based Drug Carrier Hydrogel Using Ionizing Radiation for Possible Use as Site Specific Delivery System

, , &
Pages 628-634 | Received 01 Jan 2008, Accepted 01 Feb 2008, Published online: 19 Jun 2008
 

A unique natural polymer based colon specific drug carrier was prepared from carboxymethyl cellulose (CMC) and acrylic acid (AAc) in aqueous solution employing γ‐radiation induced copolymerization and crosslinking. The effect of preparation conditions such as the natural polymer content and irradiation dose on gelation process was investigated. The swelling behavior of the prepared hydrogels was characterized by investigating the time and pH dependent swelling of the (CMC/AAc) hydrogels of different CMC content. The effects of the hydrogel composition and pH of the swelling medium on the swelling indices were estimated. The results show that the increment in the CMC content in the feed solution enhances the gelation process. The results also show the dependence of the swelling indices on both hydrogel composition and pH value of the swelling medium. To evaluate the ability of the prepared hydrogel to be used as a colon‐specific drug carrier, the release profile of theophylline was studied as a function of time at pH 1 and pH 7.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.