120
Views
6
CrossRef citations to date
0
Altmetric
ARTICLES

Preparation of alkaline polymer catalyst by radiation induced grafting for transesterification of triacetin under neural network optimized conditions

, , , , , & show all
Pages 557-565 | Received 01 Apr 2016, Accepted 01 May 2016, Published online: 15 Jul 2016
 

ABSTRACT

A simple and flexible method was used to develop new alkaline polymer catalyst through radiation induced grafting of glycidylmethacrylate (GMA) onto polyethylene/polypropylene (PE/PP) nonwoven sheet followed by amination reaction and alkalisation. The chemical structure and morphology of catalyst was evaluated by Fourier transform-infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA). The catalyst was examined for the transesterification of triacetin/methanol mixtures in a batch mode and the obtained methyl ester was detected by GC-MS. In order to optimize the reaction parameters towards getting the higher yield, an artificial neural network (ANN) was used to develop a non-linear model correlating the four independent reaction parameters including catalyst dosage, triacetin/methanol molar ratio, reaction time and temperature. The maximum conversion obtained via the simulated annealing (SA) algorithm was 86.2% at the optimal conditions of 5.01 wt% catalyst dosage, triacetin/methanol 1:12 molar ratio, 8 h reaction time and 62.8°C temperature. Upon using these optimal conditions in the experimental reaction, the conversion of as high as 85% was achieved. These results suggest that the simply modified low cost PE/PP fibrous sheet has a potential to catalyze biodiesel production. Moreover, the combined ANN-SA modelling method is highly effective in predicting the conversion of transesterification reaction and optimizing its parameters.

Funding

The authors from Universiti Teknologi Malaysia (UTM) wish to acknowledge the financial support from the Research University fund (grant # 09H46).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,060.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.