226
Views
43
CrossRef citations to date
0
Altmetric
Research Article

Oral gene delivery: Strategies to improve stability of pDNA towards intestinal digestion

, , &
Pages 311-319 | Published online: 08 Oct 2008
 

Abstract

Purpose: Gastrointestinal (GI) nucleases are responsible for a rapid presystemic degradation of orally administered transgenes. Within the current study, the activity of these degrading enzymes as well as the effect of various nuclease inhibitors on the degradation process were evaluated in order to assess their potential as auxiliary agents in oral gene delivery.

Methods: Digestion assays of pDNA with DNaseI and in GI juices were performed in absence and presence of inhibitors. Consequently, a chitosan conjugate with covalently bound ethylendiaminetetraacetic acid disodium salt dihydrat (EDTA) was synthesized and its nuclease inhibitory properties were evaluated.

Results: Small intestinal juice was shown to possess a nuclease activity per millilitre corresponding to 0.02 Kunitz units of DNaseI. Inhibition studies revealed that inhibitory activity followed the ranking: EDTA > sodium dodecyl sulfate (SDS) > aurintricarboxylic acid (ATA) > poly (acrylic acid) > cysteine. The chitosan–EDTA conjugate offered good nuclease inhibiting properties.

Conclusion: This study determined the nuclease activity of native porcine small intestinal juice as well as enterocytes homogenate. Moreover, several promising strategies to overcome this enzymatic barrier were identified.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.