341
Views
18
CrossRef citations to date
0
Altmetric
Original Article

One-step formation of lipid-polyacrylic acid-calcium carbonate nanoparticles for co-delivery of doxorubicin and curcumin

, , , , &
Pages 704-714 | Received 03 Feb 2017, Accepted 02 Apr 2017, Published online: 02 May 2017
 

Abstract

A doxorubicin (Dox) and curcumin (Cur) combination treatment regimen has been widely studied in pre-clinical research. However, the nanoparticles developed for this combination therapy require a consecutive drug loading process because of the different water-solubility of these drugs. This study provides a strategy for the “one-step” formation of nanoparticles encapsulating both Dox and Cur. We took advantage of polyacrylic acid (PAA) and calcium carbonate (CaCO3) to realise a high drug entrapment efficiency (EE) and pH-sensitive drug release using a simplified preparation method. Optimisation of lipid ratios and concentrations of CaCO3 was conducted. Under optimal conditions, the mean diameter of PEGylated lipid/PAA/CaCO3 nanoparticles with encapsulated Cur and Dox (LPCCD) was less than 100 nm. An obvious pH-sensitive release of both drugs was observed, with different Dox and Cur release rates. Successful co-delivery of Cur and Dox was achieved via LPCCD on HepG2 cells. LPCCD altered the bio-distribution of Dox and Cur in vivo and decreased Dox-induced cardiotoxicity. The current investigation has developed an efficient ternary system for co-delivery of Dox and Cur to tumours, using a “one-step” formation resulting in nanoparticles possessing remarkable pH-sensitive drug release behaviour, which may be valuable for further clinical studies and eventual clinical application.

Disclosure statement

The authors report no conflicts of interest.

Additional information

Funding

This work was supported in part by the Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.