3,469
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Active-site molecular docking of nigellidine with nucleocapsid–NSP2–MPro of COVID-19 and to human IL1R–IL6R and strong antioxidant role of Nigella sativa in experimental rats

, , , &
Pages 511-521 | Received 11 May 2020, Accepted 25 Aug 2020, Published online: 18 Mar 2022
 

Abstract

The recent outbreak of SARS CoV-2 has changed the global scenario of human lives/economy. A significant number of the non-survivors showed cardiac renal vasculature dysfunction. A ‘cytokine storm’ namely, interleukin IL6–IL1 receptors, i.e. IL6R–IL1R over-functioning was reported. Here, nigellidine, an indazole alkaloid and key component of Nigella sativa L. (NS) commonly known as black cumin seed was analysed for COVID-19 protein targeting and IL1R–IL6R inhibition through molecular docking study and biochemical study in experimental rat to evaluate antioxidative capacity. The NMR/X-ray crystallographic/electron microscopic structures of COVID-19 main protease (6LU7)/spike glycoprotein (6vsb)/NSP2 (QHD43415_2)/nucleocapsid (QHD43423), human IL1R (1itb)-IL6R (1pm9) from PDB were retrieved analysed for receptor–ligand interaction. Then, those structures were docked with nigellidine using AutoDock and PatchDock server. A brief comparison was made with nigellicine thymoquinone from N. sativa. Where nigellidine showed highest binding energy of −6.6 kcal/mol, ligand efficiency of −0.3 with COVID19 Nsp2 forming bonds with amino acid CYS240 present in binding pocket. Nigellidine showed strong interaction with main protease (BE: –6.38/LE: –0.29). Nigellidine showed affinity to IL1R (–6.23). The NS treated rat showed marked decline in ALP-SGPT-SGOT-malondialdehyde (MDA) than the basal levels. From the Western blot and activity analysis, it was observed that Nigellidine (sulphuryl group drug) showed no impact on phenol-catalysing ASTIV and steroid-catalysing oestrogen-sulphotransferase expressions and activities in liver tissue and thus has no influence in sulphation-mediated adverse metabolic processes. Conclusively, nigellidine has hepato-reno-protective/antioxidant-immunomodulatory/anti-inflammatory activities with inhibit potentials of COVID-19 proteins. Further validation is necessary.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 767.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.