157
Views
1
CrossRef citations to date
0
Altmetric
Articles

Holberg's optimisation for high-order compact finite difference staggered schemes

Pages 287-296 | Received 12 Oct 2010, Accepted 26 Mar 2011, Published online: 28 Jul 2011
 

Abstract

Two optimised high-order compact finite difference (FD) staggered schemes are presented in this communication. Following Holberg's optimisation strategy, the least squares problem to minimising the group velocity (MGV) error, for the fourth- and sixth-order pentadiagonal schemes, is formulated. For a fixed level of group velocity accuracy, the optimised spectrum of wave number and the optimised coefficients for the schemes, are analytically evaluated. The spectral accuracy of these schemes has been verified by several comparisons with the FD staggered schemes obtained following Kim and Lee's (1996) optimisation procedure. Fewer group and phase velocity errors, greater resolution in terms of absolute error and resolving efficiency have been achieved by the optimised schemes proposed. High-order accuracy in time is obtained by marching the solution with an optimised Runge–Kutta scheme. Next, the comparison in terms of the number of grid points per wavelength required to achieve a standard accuracy for distances expressed in terms of the number of wavelengths travelled is presented. Numerical results from benchmark tests for the one-dimensional shallow water equations are presented.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 473.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.