242
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

QSAR with quantum topological molecular similarity indices: toxicity of aromatic aldehydes to Tetrahymena pyriformis

, , &
Pages 149-168 | Received 07 Aug 2009, Accepted 02 Dec 2009, Published online: 06 Apr 2010
 

Abstract

Extensive production and utilization of aromatic aldehydes and their derivatives without proper certification is alarming with regard to environmental safety. This concern motivated our construction of predictive quantitative structure–activity relationship (QSAR) models for the toxicity of aldehydes to the ecologically important species Tetrahymena pyriformis. Quantum topological molecular similarity (QTMS) descriptors, along with the lipid-water partition coefficient (log K o/w), were used as predictor variables. The QTMS descriptors were calculated at different levels of theory including AM1, HF/3-21G(d), HF/6-31G(d), B3LYP/6-31 + G(d,p), B3LYP/6-311 + G(2d,p) and MP2/6-311+G(2d,p). The data set of 77 aromatic aldehydes was divided into a training set (n = 58) and a test (n = 19) set, and 58 models were developed using partial least squares (PLS) and genetic partial least squares (G/PLS). We evaluated the overall predictive capacity of the models based on leave-one-out predictions for the training set compounds and model derived predictions for the test set compounds. For both PLS and G/PLS, the models built at the HF/6-31G(d) level show better predictivity (based on overall prediction) than the models developed at any of the other five levels. Further validation was also performed utilizing (process and model) randomization tests. We show that improved predictive QSAR models for aldehydic toxicity to Tetrahymena pyriformis can be generated using QTMS descriptors along with log K o/w.

Acknowledgements

Financial assistance from the Ministry of Human Resource Development, Government of India, New Delhi in the form of a scholarship to SK is gratefully acknowledged. We also thank the EPSRC (GB) and GlaxoSmithKline for financial support for APH.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 543.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.