288
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Prediction of shear stress induced by shoaling internal solitary waves based on machine learning method

ORCID Icon, , , &
Pages 221-232 | Received 24 Jul 2022, Accepted 12 Sep 2022, Published online: 21 Oct 2022
 

Abstract

Recently, the interactions between internal solitary waves (ISWs) and the seabed have directed increasing attention to ocean engineering and offshore energy. In particular, ISWs induce bottom currents and pressure fluctuations in deep water. In this paper, we propose a method for predicting the shear stress induced by shoaling ISWs based on machine learning, and the developed approach can be used to quickly determine the safety and stability of ocean engineering. First, we provided a basic dataset for model training. Four machine learning models were selected to predict the shear stress induced by shoaling ISWs under different trim conditions. The results indicated that the performance of the convolutional neural network-long short-term memory (CNN-LSTM) forest prediction model was significantly better than the three other tested models, including long short-term memory (LSTM), support vector regression (SVR) and deep neural network (DNN) models. Therefore, the CNN-LSTM forest prediction model was the optimal model for predicting the shear stress induced by shoaling ISWs. Specifically, each metric of the CNN-LSTM model was smaller than that of the other three, and the root mean squared error to the standard deviation ratio was closest to 0.7. In addition, the CNN-LSTM model significantly outperformed the SVR and DNN models in terms of the length of prediction time. The predicted values by the CNN-LSTM model were consistent with the experimental values. The method for predicting shear stress based on machine learning in this paper can be used to predict the shear stress induced by shoaling ISWs, guide future field experiment designs, reduce damage to the seabed caused by ISWs, and promote the development of ocean engineering in deep water.

Disclosure statement

No potential conflict of interest was reported by the authors.

Correction Statement

This article has been republished with minor changes. These changes do not impact the academic content of the article.

Additional information

Funding

This research was funded by the National Natural Science Foundation of China (Grant No. 42107158), the Natural Science Foundation of Jiangsu Province (Grant No. BK20210527), Open Research Fund of Key Laboratory of Coastal Science and Integrated Management, Ministry of Natural Resources (Grant no. 2021COSIMQ002).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 226.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.