165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

AT1 receptor blocker inhibits HMGB1 expression in pressure overload-induced acute cardiac dysfunction by suppressing the MAPK/NF-κB signaling pathway

, , , , &
Pages 93-99 | Received 01 Jul 2021, Accepted 14 Oct 2021, Published online: 27 Oct 2021
 

ABSTRACT

Background

High-mobility group box 1 (HMGB1) expression not only peaks during the early phase of pressure overload (PO), but also serves a role in the pathogenesis of PO-induced cardiac remodeling. Meanwhile, angiotensin II type 1 (AT1) receptor blockers reverse PO-induced cardiac remodeling and repress the secretion of inflammatory factors. However, whether AT1 receptor inhibitors decrease HMGB1 expression in the early stages of PO remains unknown.

Materials and methods

PO mouse models were established using transverse aortic constriction (TAC), in which losartan was administrated. Transthoracic echocardiography was performed 3 days after the operation, and serum and cardiac HMGB1 expression, as well as the expression levels of related proteins were measured.

Results

PO-induced acute cardiac dysfunction was observed 3 days after TAC, and was subsequently slightly, but not significantly relieved by losartan. The expression levels of HMGB1, tumor necrosis factor-α and interleukin-6 in both the serum and myocardium were upregulated in response to TAC, while they were significantly reduced by losartan. Moreover, the phosphorylation of extracellular signal-regulated kinases, p38 mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) in the myocardium were significantly increased under PO, and this was also prevented by losartan.

Conclusion

These data suggest that losartan may downregulate the expression of HMGB1 in acute cardiac dysfunction induced by PO by inhibiting the MAPKs/NF-κB signaling pathway, which indicates a novel beneficial role of AT1 receptor antagonists in ameliorating cardiac remodeling under PO.

Acknowledgments

None.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This study was supported by National Natural Science Foundation of China (No. 81970375, 81521001 and 81400193).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.