126
Views
0
CrossRef citations to date
0
Altmetric
Research Article

TRAF3 promoted ROS-induced oxidative stress in model of cardiac infarction through the regulation of ULK1 ubiquitination

, &
Pages 403-410 | Received 16 Feb 2022, Accepted 12 Mar 2022, Published online: 23 Mar 2022
 

ABSTRACT

Obejectives

Cardiac infarction is a dynamic, nonlinear and unpredictable course of disease, and who die of acute myocardial infarction, and coronary thrombosis. TRAF3 provide novel targets for the clinical prevention and treatment for tumors, viral infection, and so on.We investigated the mechanisms of TRAF3 gene, which plays a possible role in cardiac infarction and contributes to the pathogenesis of cardiac infarction-induced oxidative stress.

Methods

Serum samples of patients with cardiac infarction and normal healthy volunteers were obtained from the 920 Hospital of PLA joint service support force. C57BL/6 mice were ligated and H9C2 cells were induced with 1% O2,5%CO2 and 94% N2.

Results

The mRNA expression levels of TRAF3 in patients with cardiac infarction were increased, compared to healthy volunteers. Serum mRNA of TRAF3 was in positive correlation with serum CK levels in patients with cardiac infarction. Over-expression of TRAF3 heightened ROS-induced oxidative stress in vitro model of cardiac infarction. Then, TRAF3 recombinant protein could promote oxidative stress and aggravated cardiac infarction in mice model. Over-expression of TRAF3 induced ULK1 protein expression and reduced ULK1 ubiquitination in vitro model. The activation of ULK1 reduced the effects of TRAF3 on oxidative stress in vitro model of cardiac infarction. Meanwhile, the inhibition of ULK1 reversed the effects of si-TRAF3 on oxidative stress in vitro model of cardiac infarction.

Conclusions

This study identified that TRAF3 promoted ROS-induced oxidative stress in model of cardiac infarction through the regulation of ULK1 ubiquitination, which could potentially give rise to a new strategy for the treatment of cardiac infarction.

Authors’ contributions

SHZ designed the experiments. ZYC performed the experiments. QLL collected and analyzed the data. SBZ drafted manuscript. All authors read and approved the final manuscript.

Ethics approval and consent to participate

All patients were informed and signed informed consent voluntarily. This study was approved by the ethics committee of the 920 Hospital of PLA joint service support force and complied with the guidelines outlined in the declaration of Helsinki were followed. The written informed consent was received from all participants.

Availability of data and material

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

The author(s) reported there is no funding associated with the work featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access
  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart
* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.