621
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Bromate formation control by enhanced ozonation: A critical review

, , , ORCID Icon & ORCID Icon
Pages 1154-1198 | Published online: 30 Nov 2020
 

Abstract

In the past two decades, ozone-based advanced oxidation processes, known as enhanced ozonation processes (EOPs), have been extensively investigated for the removal of emerging organic contaminants in water, such as pesticides, endocrine-disrupting compounds, and pharmaceuticals. EOPs offer an advantage by producing highly oxidizing radicals, such as hydroxyl radicals, to oxidize recalcitrant organic compounds. Although the EOPs are able to effectively remove emerging contaminants, several studies reported the formation of bromate, which has drawn significant attention because of its potential carcinogenicity. This issue becomes challenging for the utilization of EOPs on bromide containing water. Therefore, this work critically reviews and summarizes the mechanisms, influencing factors, advantages and disadvantages, and control strategies for bromate formation by four EOPs, i.e., peroxone and e-peroxone, photolytic ozonation, heterogeneous ozonation, and sonolytic ozonation. Various economic and technical characteristics of EOPs were also compared. Mathematical modeling, pilot and full-scale data, and secondary pollutant potential (toxic metals leaching from catalyst) have been identified as knowledge gaps, and future research should seek to address these issues.

Graphical abstract

Acknowledgments

The authors would like to express their sincere gratitude to the Moorhead Water Treatment Plant, Minnesota, for hiring the first author (R. Joshi) as an intern. The internship at the plant greatly helped her in understanding of different treatment processes, and allowed her to gain hands-on experience with different analytical and operational techniques. Any opinions, findings, conclusions, or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the Moorhead Water Treatment Plant.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 652.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.