6,394
Views
42
CrossRef citations to date
0
Altmetric
Review Article

Drug delivery vectors based on filamentous bacteriophages and phage-mimetic nanoparticles

&
Pages 1898-1908 | Received 02 Oct 2017, Accepted 23 Nov 2017, Published online: 01 Dec 2017

Figures & data

Figure 1. General concept of using phage for drug and gene delivery. (A) Identification of target-recognizing peptide through bio-screening. A phage library is mixed with immobilized targets and incubated for a proper time. Unbound phages are then washed away with a washing buffer. Bound phages are eluted with an elution buffer, and amplified using medium containing preincubated E.coli bacteria and then acted as a new input library for next round bio-screening. After 3 ∼ 5 rounds, the selected phage clones are identified. (B) The paradigm of drug and gene delivery using phage particles. Phage can be chemically modified and/or genetically engineered to load drugs (a) and carry foreign genes (b), respectively. Phage can also be incorporated with other nanometer carriers for drug and gene delivery, such as liposomes (c) and nanoparticles (d). (C) The paradigm of drug and gene delivery using phage-borne proteins. Wild type or fused phage proteins can be inserted into liposomes (e) and polymer nanoparticles (g) to form phage-mimetic complexes, and even self-assembly into nanophage (f) to deliver drug and gene.

Figure 1. General concept of using phage for drug and gene delivery. (A) Identification of target-recognizing peptide through bio-screening. A phage library is mixed with immobilized targets and incubated for a proper time. Unbound phages are then washed away with a washing buffer. Bound phages are eluted with an elution buffer, and amplified using medium containing preincubated E.coli bacteria and then acted as a new input library for next round bio-screening. After 3 ∼ 5 rounds, the selected phage clones are identified. (B) The paradigm of drug and gene delivery using phage particles. Phage can be chemically modified and/or genetically engineered to load drugs (a) and carry foreign genes (b), respectively. Phage can also be incorporated with other nanometer carriers for drug and gene delivery, such as liposomes (c) and nanoparticles (d). (C) The paradigm of drug and gene delivery using phage-borne proteins. Wild type or fused phage proteins can be inserted into liposomes (e) and polymer nanoparticles (g) to form phage-mimetic complexes, and even self-assembly into nanophage (f) to deliver drug and gene.