292
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Optimization of heat treatment and calibration procedures for high temperature irradiation resistant thermocouples

ORCID Icon, & ORCID Icon
Pages 349-363 | Published online: 15 Dec 2017
 

ABSTRACT

A detailed description is provided for the optimization of heat treatment and calibrating procedure for Idaho National Laboratory’s high temperature irradiation resistant thermocouples (HTIR-TC). Also discussed is the implication of the procedures on the overall performance of the HTIR-TC finished product; in particular, for the case of long lead sections that are typical of sensors deployed in nuclear reactors. The effect on the measurement accuracy of fluctuations of the reference temperature and localized heating along the sensor lead is also investigated. A calibration graphical user interface (GUI) and accompanying script is presented for unifying the calibration process. A fifth-order polynomial function was found to be best for fitting HTIR-TC calibration data. The performance of the HTIR-TCs subject to the optimized heat treatment and calibration procedures is shown to be robust and consistent with other TC industry standards. Electromotive force curves versus length of the TC are presented to clarify positioning of TCs in general and how its effect on the calibrated temperatures.

Additional information

Funding

This work was supported by the U.S. Department of Energy [Grant Number DE AC07 05ID14517].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 804.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.