511
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Foundation heat exchangers for residential ground source heat pump systems—Numerical modeling and experimental validation

, , , &
Pages 1059-1074 | Received 07 Mar 2011, Accepted 07 Jul 2011, Published online: 09 Dec 2011
 

Abstract

A new type of ground heat exchanger that utilizes the excavation often made for basements or foundations has been proposed as an alternative to conventional ground heat exchangers. This article describes a numerical model that can be used to size these foundation heat exchanger (FHX) systems. The numerical model is a two-dimensional finite-volume model that considers a wide variety of factors, such as soil freezing and evapotranspiration. The FHX numerical model is validated with one year of experimental data collected at an experimental house located near Oak Ridge, Tennessee. The model shows good agreement with the experimental data—heat pump entering fluid temperatures typically within 1°C (1.8°F)—with minor discrepancies due to approximations, such as constant moisture content throughout the year, uniform evapotranspiration over the seasons, and lack of ground shading in the model.

Acknowledgments

Lu Xing is Research Assistant. James R. Cullin Student Member ASHRAE, is Research Assistant. Jeffrey D. Spitler, PhD, PE, Fellow ASHRAE, is Regents Professor and C. M. Professor. Piljae Im, PhD, Associate Member ASHRAE, is R&D staff. Daniel E. Fisher, PhD, PE, Fellow ASHRAE, is E. Fisher Professor.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 78.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.