204
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Efficient bioconversion from acid hydrolysate of waste oleaginous yeast biomass after microbial oil extraction to bacterial cellulose by Komagataeibacter xylinus

, , , , , , , & show all
Pages 1025-1031 | Published online: 20 Oct 2017
 

ABSTRACT

Biomass acid hydrolysate of oleaginous yeast Trichosporon cutaneum after microbial oil extraction was applied as substrate for bacterial cellulose (BC) production by Komagataeibacter xylinus (also named as Gluconacetobacter xylinus previously) for the first time. BC was synthesized in static culture for 10 days, and the maximum BC yield (2.9 g/L) was got at the 4th day of fermentation. Most carbon sources in the substrate (glucose, mannose, formic acid, acetic acid) can be utilized by K. xylinus. The highest chemical oxygen demand (COD) removal (40.7 ± 3.0%) was obtained at the 6th day of fermentation, and then the COD increased possibly due to the degradation of BC. The highest BC yield on COD consumption was 38.7 ± 4.0% (w/w), suggesting that this is one efficient bioconversion for BC production. The BC structure was affected little by the substrate by comparison with that generated in classical HS medium using field-emission scanning electron microscope (FE-SEM), Fourier transform infrared, and X-ray diffraction. Overall, this technology can both solve the issue of waste oleaginous yeast biomass and produce valuable biopolymer (BC).

Acknowledgments

The authors acknowledge the financial support of the National Natural Science Foundation of China (51378486, 21606229, 51508547), the Science and Technology Project of Guangdong Province (2016A010105016, 2016A010104009), project of Guangzhou Science and Technology (201610010014), project of Huai-An Science and Technology (HAS2015035), Youth Innovation Promotion Association CAS (2015290), and Foundation of Director of Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences (y407r41001).

Additional information

Funding

This work was supported by the National Natural Science Foundation of China [Grant Number 51378486].

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.