547
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Microbial conversion of lignin rich biomass hydrolysates to medium chain length polyhydroxyalkanoates (mcl-PHA) using Pseudomonas putida KT2440

, , &
Pages 54-63 | Published online: 10 Mar 2022
 

Abstract

As world moves toward increasing number of products being produced from renewable lignocellulosic agricultural and forest residues, the major classes of products that will shift to greener routes on priority are energy, fuels, and materials in that order. In materials segment, polyhydroxyalkanoates are an emerging class of biopolyesters with several potential industrial uses. The present work investigates medium chain length polyhydroxyalkanoates (mcl-PHA) producing capabilities of Pseudomonas putida KT2440 from a mixture of compounds produced from lignocellulosic biomass deconstruction. The hydrolysates obtained from nitric acid pretreatment of lignin rich cotton stalk (CS) and palm empty fruit bunch (EFB) were used as substrates for production of mcl-PHA. Presence of 3-hydroxydecanoate and 3-hydroxyocytanoate observed on GC-MS confirmed PHA accumulation in the cells. PHA accumulation was estimated between 20% and 35% of cell dry weight when grown on both model substrates as well as biomass hydrolysates. PHA titers obtained on hydrolysates of CS and EFB were 0.24 g/L and 0.21 g/L, respectively.

Additional information

Funding

Authors acknowledge financial support to the work from Department of Biotechnology, Ministry of Science & Technology, Government of India.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 604.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.