1,260
Views
116
CrossRef citations to date
0
Altmetric
Original Articles

Treatment Methods for Wine-Related and Distillery Wastewaters: A Review

&
Pages 70-87 | Published online: 21 May 2008
 

ABSTRACT

A large and increasing volume of wastewater is produced globally by the winery and distillery industries. These wastewaters are generally acidic, high in chemical oxygen demand (COD) and color, and may contain phenolic compounds that can inhibit biological treatment systems. Treatment of distillery and phenolic compound–rich wastewaters by physicochemical, aerobic biological systems and hybrid treatment methods are discussed, as well as products derived from fungal treatment. White-rot fungi have been shown to exhibit unique biodegradation capabilities, primarily due to their production of extracellular and broad substrate range enzymes that are capable of mineralizing lignin, a recalcitrant biopolymer. One of these enzymes, laccase, catalyses the oxidation of various organic compounds with the subsequent reduction of molecular oxygen to water. Laccase synthesis, induction, and inhibition are discussed with the utilization of waste residues for laccase production and the enzyme's potential industrial applications. Distillery wastewaters offer a unique, presterilized, potential growth substrate for the production of lignolytic enzymes such as laccase. Compounds may be utilized for enzyme and biomass production resulting in remediation by the growing fungus.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 548.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.