322
Views
8
CrossRef citations to date
0
Altmetric
ARTICLES

Bioremediation of Copper-Contaminated Soil by Co-Application of Bioaugmentation and Biostimulation with Organic Nutrient

, &
Pages 90-98 | Published online: 24 May 2011
 

ABSTRACT

This study investigates various factors affecting bioremoval of copper from experimentally contaminated soil by bioaugmentation with a metal-resistant microorganism (B1) accompanied with amendment of an organic matter (mustard oil cake). The initial contamination level reduced by 67% with this joint strategy compared to 13% by application of bioaugmentation. Increasing organic amendment concentration beyond 6 wt% did not significantly improve microbial growth and the extent of bioremediation due to increase of pH. The bioaccessible copper concentration, however, did not change significantly. Controlling pH by one-time application of ferrous sulfate (1 wt%) into the experimental run resulted in enhanced microbial growth. The copper concentration in soil and bioaccessible copper concentration reduced to 55% and 80% of the value obtained without pH control for the same period of incubation. This study suggests the potential of co-application of isolated metal-resistant bacteria (B1) and mustard oil cake amendment in conjunction with pH control for in situ bioremediation of copper-contaminated soil.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial support provided by West Bengal Pollution Control Board.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 548.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.