442
Views
24
CrossRef citations to date
0
Altmetric
Original Articles

MACHINING OF CORTICAL BONE: SIMULATIONS OF CHIP FORMATION MECHANICS USING METAL MACHINING MODELS

&
Pages 206-230 | Published online: 25 May 2011
 

Abstract

This paper investigates chip formation in the machining of cortical bone and the application of isotropic elastic-plastic material models with a pressure dependent yield stress and a strain path dependent failure strain law to finite element calculations to predict observed behaviour. It is shown that a range of models can be created that result in segmented chip formations and a range of specific cutting forces similar to those observed experimentally. Results from the simulations provide an explanation for differences in the ratio of thrust to cutting forces observed between previous experimental studies, namely that the cutting tools used may have had different edge sharpness or degree of damage induced by the material removal process. Measurements of edge profiles from one of these studies support that explanation and emphasize the importance of tool toughness in maintaining efficient cutting of bone.

ACKNOWLEDGMENTS

The experimental measurements of cutting and thrust forces (the basis of Figure ) were carried out by C. W. Yeager as part of his MSc thesis (Yeager, Citation2006).

Notes

*Ductility ranking (1 most ductile) from simulation results, Figure 4.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.