239
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

RESPONSE SURFACE ANALYSIS OF SLICING OF SILICON INGOTS WITH FOCUS ON PHOTOVOLTAIC APPLICATION

, &
Pages 624-652 | Published online: 04 Dec 2012
 

Abstract

Polycrystalline silicon wafers are widely used in Photovoltaic (PV) industry as a base material for the solar cells. The existing silicon ingot slicing methods typically provide minimum wafer thickness of 300–350 μm and a surface finish of 3–5 μm Ra while incurring considerable kerf loss of 35–40%. Consequently, efficient dicing methods need to be developed, and in the quest for developing new processes for silicon ingot slicing, the wire-EDM (electric discharge machining) is emerging as a potential process. Slicing of a 3′′ square silicon ingot into wafers of 500 μm in thickness has been performed to study the process capability. This article analyzes the effect of processing parameters on the cutting process. The objective of the experimental study is improvement in slicing speed, minimization of kerf loss and surface roughness. A central composite design-based response surface methodology (RSM) has been used to study the slicing of polycrystalline silicon ingot via wire-EDM. A zinc-coated brass wire, 100 μm in diameter, has been used as an electrode in the slicing experiments. It has been observed that the optimal selection of the process parameters results in an increase of 40–50% in the slicing rate along with a 20% reduction in the kerf loss as compared to the conventional methods. The machined surfaces on the sliced wafer were free of micro-cracks and wire material contamination, thereby making it useful for electronic applications.

ACKNOWLEDGMENT

The authors wish to acknowledge financial support for this work from National Centre for Photovoltaic Research and Education (NCPRE), IIT Bombay, funded by MNRE and Electronica Machine Tools Ltd., Pune for permitting us to use their facility to undertake this experimentation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 431.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.