162
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

An Experimental Study of Secondary WAG Injection in a Low-Temperature Carbonate Reservoir in Different Miscibility Conditions

, , , , , & show all
Pages 1359-1368 | Received 24 May 2010, Accepted 26 Jun 2010, Published online: 14 May 2012
 

Abstract

This experimental study is aimed at evaluation of the performance of secondary WAG injection in carbonate cores at different pressures. To do so, a comprehensive series of high-pressure high-temperature (HPHT) core flooding tests are conducted. The fluid system includes reservoir dead and live crude oil, CO2, and synthetic brine while the chosen porous media consists of a number of fractured carbonate core samples. Parameters such as oil recovery factor, water and oil production rates, and pressure drop along the core are recorded for both dead and live oil. According to results, at first increasing pressure improves the oil recovery, but this improvement after MMP is not as significant as it is before MMP. Also recoveries of dead and live oils at same pressure show different values due to differences in miscibility condition of injected gas. Then as the graphs demonstrate, relative permeability reduction due to hysteresis effect has dominant effect on pressure drop curves. Finally, as the production rate curves show, nearly all of the remained oil after breakthrough is produced as the gas is being produced and almost no oil can be recovered during water production portions.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 855.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.