Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 46, 2011 - Issue 8
434
Views
52
CrossRef citations to date
0
Altmetric
ARTICLES

Salting-out effects on the characterization of naphthenic acids from Athabasca oil sands using electrospray ionization

, , &
Pages 844-854 | Received 08 Nov 2010, Published online: 16 Jun 2011
 

Abstract

There is growing interest in the mass spectrometric characterization of oil sands acids present in natural waters and contaminated soils. This interest stems from efforts to isolate the principal toxic components of oil sands acid extractable organics in aquatic environment. Salting-out effects are demonstrated for nanospray ionization mass spectra of Athabasca oil sands acid extractable organics (naphthenic acids), using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The differences in spectra obtained for the sodium naphthenates in dichloromethane/acetonitrile cosolvents compared to spectra obtained in the absence of saturated sodium chloride salts, are used here as a surrogate to indicate the more bioavailable or toxic components in natural waters. Whereas, monocarboxylic compounds (CnH2n+ZO2) were prevalent in the Z =−4, −6, and −12 (2, 3 and 6-ring naphthenic acids respectively) family in the carbon number range of 13 to 19 in the dichloromethane/acetonitrile cosolvent systems, salting-out effects resulted in a general enhancement of Z =−4 species, relative to others. Likewise, the shift in relative intensities of species containing O1, O3, O4, O2S and O3S was dramatic for systems with and without saturated salts present. The O4 and O3S species for example, were prevalent in the dichloromethane/acetonitrile cosolvent but were non-detected in the presence of saturated salts. Interactions of oil sands acids with salts are expected to occur in oil sands processed waters and natural saline waters. As evident by the distribution of species observed, salting-out effects will play a major role in limiting the bioavailability of oil sands acids in aquatic systems.

Acknowledgments

This work was funded in part by the Program of Energy Research and Development.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.