Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 48, 2013 - Issue 3
148
Views
6
CrossRef citations to date
0
Altmetric
ARTICLES

The comparision of Coprinus cinereus peroxidase enzyme and TiO2 catalyst for phenol removal

, , &
Pages 300-307 | Received 06 Apr 2012, Published online: 17 Dec 2012
 

Abstract

This article investigates phenol removal from an aqueous solution by using enzymatic and photocatalytic methods and the efficiency of these methods has been compared. In enzymatic and photocatalytic methods, Coprinus cinereus, peroxidase enzyme and commercial TiO2 powders (Degussa P-25) in aqueous suspension were used, respectively, in ambient temperature. The effects of different operating parameters such as duration of process, catalyst dosage or enzyme concentration, pH of the solution, initial phenol concentration and H2O2 concentration on both processes were examined. In enzymatic method, efficiency of degradation reached 100% within 5 min, while in the photocatalytic method, the efficiency of degradation reached approximately 70% within 60 min. In photocatalytic method, there is an optimum concentration for catalyst dosage (near 2.0 g/L) to gain 80% efficiency, while in the enzymatic method, increasing the amount of enzyme could lead to an increase in the efficiency up to 100%. Moreover, the optimum pH in enzymatic and photocatalytic methods stood at 8.0 and 7.0, respectively. In both methods, the addition of different amounts of H2O2 increased the degradation efficiency to 100%.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.