Publication Cover
Journal of Environmental Science and Health, Part A
Toxic/Hazardous Substances and Environmental Engineering
Volume 53, 2018 - Issue 7
169
Views
0
CrossRef citations to date
0
Altmetric
Articles

Copper nanoparticles toxicity: Laboratory strains verses environmental bacterial isolates

, &
Pages 643-650 | Received 23 Oct 2017, Accepted 15 Jan 2018, Published online: 30 Jan 2018
 

ABSTRACT

Nanoparticles have emerged as significant environmental contaminants and their impact has been studied using laboratory strains of bacteria. This study focuses on investigating the response of environmental isolate and laboratory strains of E. coli to 50 and 100 nm size of copper nanoparticles (CuNPs). The laboratory cultures included pathogenic and non-pathogenic strains. The environmental isolate and the non-pathogenic E. coli strain showed different inactivation patterns. After 2 h exposure to 50 nm CuNPs, the environmental isolate and the lab strain of E. coli lost 7.22 and 6.47 log; whereas the reduction of 6.16 and 6.68 log resulted after exposure to 100 nm CuNPs, respectively. The pathogenic E. coli O157:H7 exposed to 50 and 100 nm CuNPs for 2 h resulted in 5.24 and 6.54 log reduction, respectively. Although the environmental isolate and the laboratory strains of E. coli showed similar inactivation trends; they exhibited different toxicity elicitation mechanisms after exposure to the CuNPs. The pathogenic and non-pathogenic strains elicited significantly different levels of glutathione reductase (GR) activities, an enzyme critical for protection against radicals. Similarly, the environmental isolate and the lab strains of E. coli exhibited opposite trend in GR activities. These results clearly indicate divergence in the toxicity elicitation in the environmental isolate versus the laboratory strains from exposure to CuNPs, which highlights the need for an in-depth investigation of the impact of NPs on the biological processes and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.

Acknowledgment

Funding for this work was provided by the National Science Foundation Water and Environmental Technology Center at Arizona State University. NSF grant # 0855802 and ASU # XUS0001.

Additional information

Funding

This work was supported by the National Science Foundation Water and Environmental Technology Center at Arizona State University, (NSF 0855802, ASU XUS0001).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 709.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.