221
Views
27
CrossRef citations to date
0
Altmetric
Biodiversity in forest ecosystems

Diversity of forest plant species at the community and landscape scales in Switzerland

, , , &
Pages 604-613 | Published online: 22 Nov 2008
 

Abstract

Conservation strategies increasingly refer to indicators derived from large biological data. However, such data are often unique with respect to scale and species groups considered. To compare richness patterns emerging from different inventories, we analysed forest species richness at both the landscape and the community scales in Switzerland. Numbers of forest species were displayed using nationwide distributional species data and referring to three different definitions of forest species. The best regression models on a level of four predictor variables ranged between adj. R 2 = 0.50 and 0.66 and revealed environmental heterogeneity/energy, substrate (rocky outcrops) and precipitation as best explanatory variables of forest species richness at the landscape scale. A systematic sample of community data (n = 729; 30 m2, 200 m2, 500 m2) was examined with respect to nationwide community diversity and plot species richness. More than 50% of all plots were assigned to beech forests (Eu-Fagion, Cephalanthero-Fagion, Luzulo-Fagion and Abieti-Fagion), 14% to Norway spruce forests (Vaccinio-Piceion) and 13% to silver fir forests (Piceo-Abietion). Explanatory variables were derived from averaged indicator values per plot, and from biophysical and disturbance factors. The best models for plot species richness using four predictor variables ranged between adj. R 2 = 0.31 and 0.34. Light (averaged L-indicator, tree canopy) and substrate (averaged R-indicator and pH) had the highest explanatory power at all community scales. By contrast, the influence of disturbance variables was very small, as only a small portion of plots were affected by this factor. The effects of disturbances caused by extreme events or by management would reduce the tree canopies and lead to an increase in plant species richness at the community scale. Nevertheless, such community scale processes will not change the species richness at the landscape scale. Instead, the variety of different results derived from different biological data confirms the diversity of aspects to consider. Therefore, conservation strategies should refer to value systems.

Acknowledgements

We thank Iris Gödickemeier and Sandra Limacher for their help in the field, Walter Keller for defining the plant associations for all relevés, two anonymous reviewers for valuable comments, and Charles Mitchell for revising the English.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 234.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.