137
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Computational and experimental modification of portable sign structure design following NCHRP 350 criteria

, &
Pages 111-116 | Received 27 Feb 2010, Accepted 09 Aug 2010, Published online: 29 Apr 2011
 

Abstract

As a follow-up to a study published in 2008 [J.-W. Seo, D.G. Linzell, and Z. Rado, Crash performance of x-shaped support base work zone temporary sign structures, Int. J. Crashworthiness 13 (2008), pp. 437–450], research discussed herein examines effective methods for selecting and modifying portable sign structure designs so that they are deemed acceptable according to National Cooperative Highway Research Program (NCHRP) Report 350 [H.E. Ross, Jr., D.L. Sicking, J.D. Zimmer, and R.A. Michle, Recommended procedures for the safety performance evaluation of highway features, National Cooperative Highway Research Program Rep. 350, Publication Project 22–7 FY’89, Texas Transportation Institute, Austin, TX, 1993] criteria. Portable sign structures, often used as signage for work zones, are frequently susceptible to vehicular impact. If an impact occurs, a possible safety threat to occupants in the vehicle exists due to sign panel penetration. In this study, the methodology used to select a portable sign structure design from two alternatives, one of which was summarised in the 2008 publication [J.-W. Seo, D.G. Linzell, and Z. Rado, Crash performance of x-shaped support base work zone temporary sign structures, Int. J. Crashworthiness 13 (2008), pp. 437–450], is presented along with the procedure used to optimise the selected design so that it performed acceptably according to the NCHRP 350 standards. The selected design, one having an H-base, was modified to meet the NCHRP 350 criteria by strategically replacing traditional metallic fasteners with nylon fasteners. Procedures used to simulate the impact tests, select the appropriate base design and modify that design to meet the NCHRP criteria are presented.

Acknowledgements

The authors would like to acknowledge the Pennsylvania Department of Transportation for funding this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.