964
Views
29
CrossRef citations to date
0
Altmetric
Original Articles

Numerical analysis of low-velocity rigid-body impact response of composite panels

, , &
Pages 27-43 | Received 18 Dec 2013, Accepted 05 Sep 2014, Published online: 29 Sep 2014
 

Abstract

This paper investigates various modelling strategies to identify the most suitable approach for modelling the low-velocity impact response of laminated composite panels. The purpose of this paper is to thoroughly investigate a dropped tool scenario or a ground vehicle impact on an aircraft fuselage panel using detailed numerical models. Three-dimensional meso-scale finite element models have been developed and implemented with user-defined material subroutines in ABAQUS/Standard. The models predict the simultaneous evolution of inter-laminar and intra-laminar damage mechanisms that occur in composite panels during impact. The paper describes the implementation of the combined inter/intra-laminar models and assesses their performance. User-defined material models developed in previous work for quasi-static problems have been further developed in this paper for damage analysis under impact loading. Experimental drop-weight impact tests, representative of low-velocity high-energy rigid-body impacts, have been carried out for model validation. Impact energy levels were varied from 10 to 40 J to evaluate the damage threshold and damage area that develops within the laminate. The results of the combined inter/intra-laminar model are in excellent agreement with experimental data, especially in terms of energy absorbed during impact. Numerical results provide an accurate description of the threshold at which a significant change in laminate stiffness occurs. It is shown conclusively that the combined inter/intra-laminar damage model developed in this work can be employed as an accurate predictive tool for low-velocity impact events.

Additional information

Funding

The research leading to these results has received funding from the European Community's Seventh Framework Programme FP7/2007-2013 [grant number 213371] (MAAXIMUS, www.maaximus.eu).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 433.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.