127
Views
0
CrossRef citations to date
0
Altmetric
Articles

Numerical modeling and parametric analysis of performance of a monopropellant thruster using a single-part catalyst bed model

, &
Pages 36-64 | Received 24 Jul 2022, Accepted 04 Sep 2023, Published online: 26 Sep 2023
 

Abstract

Monopropellant hydrazine thruster, depending on their thrust level, specific impulse, and unique functional regime, are widely used in situation control, orbital transmission, and position correction systems of satellites. In these thrusters, hydrazine decomposes by passing through the catalyst bed in a highly exothermic reaction to hot gas products. Hot gases generate thrust force by passing through a convergent-divergent nozzle. Pore scale analysis of catalytic reactions is very common in various industries and is of interest to researchers due to its accuracy. In this paper, the decomposition chamber of a monopropellant hydrazine thruster is numerically simulated with a single-part bed model at the pore-scale. The length of decomposition chamber was 2.48 cm. Then the effects of parameters such as catalyst granule diameter, catalyst bed porosity coefficient and also chamber inlet pressure on the performance of the decomposition chamber and thruster are investigated. Simulations have been performed for catalyst granules with diameters of 0.88, 1.00 and 1.15 mm in three porosity coefficients of 0.4, 0.55 and 0.65. The inlet pressure is also changed from 10 to 25 bar in four different levels. The results showed that the porosity coefficient is the most effective parameter and with its decrease, the specific impulse and temperature rise, while the thrust force and mass flow rate intensify. Also, the size of the catalyst granules affects the performance of the bed and thruster so that by increasing it (at a certain porosity coefficient), a trend similar to the effect of decreasing the porosity coefficient can be seen in the results. On the other hand, with enhancing inlet pressure, the thrust force increases significantly. In this paper, the effect of bed parameters on the thruster performance is discussed in detail, which contains helpful results for researchers that work on improving the decomposition chamber efficiency.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.