345
Views
14
CrossRef citations to date
0
Altmetric
Original Articles

Effects of preferential and differential diffusion on the mutual annihilation of two premixed hydrogen–air flames

&
Pages 659-672 | Received 26 Apr 2005, Accepted 03 Aug 2005, Published online: 20 Feb 2007
 

The unsteady process of upstream head-on quenching of two laminar premixed hydrogen–air flames at different equivalence ratios in one dimension is investigated numerically in the presence of preferential and differential diffusion effects. Important chemical and transport characteristics of the mutual annihilation process are studied during the two primary stages of upstream mutual annihilation, preheat layers' and reaction layers' interactions. Because of the diffusive mobility of the fuel, hydrogen, relative to heat and the oxidizer, preferential and differential diffusion effects result in a shift in the equivalence ratio in the reaction zone to leaner conditions. This shift, in turn, affects the subsequent reaction layers' interactions through qualitative and quantitative changes in the rates of reactants' consumption and radicals' production. Another consequence of this shift is the presence of excess and ‘unburnt’ fuel or oxidizer at the end of the mutual annihilation process. The process of mutual annihilation occurs over time scales that are significantly shorter than characteristic residence times associated with flames.

Acknowledgements

This work was supported by the National Science Foundation, Chemical and Transport Systems Program.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 288.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.