479
Views
4
CrossRef citations to date
0
Altmetric
Articles

Multicriteria generalization (MCG): a decision-making framework for formalizing multiscale environmental data reduction

&
Pages 899-922 | Received 18 Mar 2011, Accepted 21 Jul 2011, Published online: 14 Nov 2011
 

Abstract

Environmental simulation models need automated geographic data reduction methods to optimize the use of high-resolution data in complex environmental models. Advanced map generalization methods have been developed for multiscale geographic data representation. In the case of map generalization, positional, geometric and topological constraints are focused on to improve map legibility and communication of geographic semantics. In the context of environmental modelling, in addition to the spatial criteria, domain criteria and constraints also need to be considered. Currently, due to the absence of domain-specific generalization methods, modellers resort to ad hoc methods of manual digitization or use cartographic methods available in off-the-shelf software. Such manual methods are not feasible solutions when large data sets are to be processed, thus limiting modellers to the single-scale representations. Automated map generalization methods can rarely be used with confidence because simplified data sets may violate domain semantics and may also result in suboptimal model performance. For best modelling results, it is necessary to prioritize domain criteria and constraints during data generalization. Modellers should also be able to automate the generalization techniques and explore the trade-off between model efficiency and model simulation quality for alternative versions of input geographic data at different geographic scales. Based on our long-term research with experts in the analytic element method of groundwater modelling, we developed the multicriteria generalization (MCG) framework as a constraint-based approach to automated geographic data reduction. The MCG framework is based on the spatial multicriteria decision-making paradigm since multiscale data modelling is too complex to be fully automated and should be driven by modellers at each stage. Apart from a detailed discussion of the theoretical aspects of the MCG framework, we discuss two groundwater data modelling experiments that demonstrate how MCG is not just a framework for automated data reduction, but an approach for systematically exploring model performance at multiple geographic scales. Experimental results clearly indicate the benefits of MCG-based data reduction and encourage us to continue expanding the scope of and implement MCG for multiple application domains.

Acknowledgements

This research was partially supported by Grant# R82-7961 from the US Environmental Protection Agency's (US EPA) Science to Achieve Results (STAR) program. This article has not been subjected to any review by the EPA and therefore does not necessarily reflect the views of the Agency and no official endorsement should be inferred. We also thank the three anonymous reviewers whose comments helped us clarify several concepts and understand and explain our work better.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.