1,510
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Kinematic interpolation of movement data

Pages 854-868 | Received 28 Jan 2015, Accepted 18 Jul 2015, Published online: 17 Sep 2015
 

Abstract

Mobile tracking technologies are facilitating the collection of increasingly large and detailed data sets on object movement. Movement data are collected by recording an object’s location at discrete time intervals. Often, of interest is to estimate the unknown position of the object at unrecorded time points to increase the temporal resolution of the data, to correct erroneous or missing data points, or to match the recorded times between multiple data sets. Estimating an object’s unknown location between known locations is termed path interpolation. This paper introduces a new method for path interpolation termed kinematic interpolation. Kinematic interpolation incorporates object kinematics (i.e. velocity and acceleration) into the interpolation process. Six empirical data sets (two types of correlated random walks, caribou, cyclist, hurricane and athlete tracking data) are used to compare kinematic interpolation to other interpolation algorithms. Results showed kinematic interpolation to be a suitable interpolation method with fast-moving objects (e.g. the cyclist, hurricane and athlete tracking data), while other algorithms performed best with the correlated random walk and caribou data. Several issues associated with path interpolation tasks are discussed along with potential applications where kinematic interpolation can be useful. Finally, code for performing path interpolation is provided (for each method compared within) using the statistical software R.

Acknowledgements

The author wishes to thank U. Demšar for comments on a previous draft of this manuscript. The author also thanks the three anonymous referees and the Associate Editor S. Dodge who provided critical feedback that greatly improved this work. The caribou telemetry data were made available by the British Columbia Ministry of Environment. The athlete GPS data were collected in collaboration with the University of Victoria Ultimate Frisbee Club.

Disclosure statement

No potential conflict of interest was reported by the author.

Supplemental data

Supplemental data for this article can be accessed here.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.