855
Views
21
CrossRef citations to date
0
Altmetric
Original Articles

A method for finding a least-cost wide path in raster space

Pages 1469-1485 | Received 17 Apr 2015, Accepted 23 Oct 2015, Published online: 18 Dec 2015
 

ABSTRACT

Given a grid of cells each having an associated cost value, a raster version of the least-cost path problem seeks a sequence of cells connecting two specified cells such that its total accumulated cost is minimized. Identifying least-cost paths is one of the most basic functions of raster-based geographic information systems. Existing algorithms are useful if the path width is assumed to be zero or negligible compared to the cell size. This assumption, however, may not be valid in many real-world applications ranging from wildlife corridor planning to highway alignment. This paper presents a method to solve a raster-based least-cost path problem whose solution is a path having a specified width in terms of Euclidean distance (rather than by number of cells). Assuming that all cell values are positive, it does so by transforming the given grid into a graph such that each node represents a neighborhood of a certain form determined by the specified path width, and each arc represents a possible transition from one neighborhood to another. An existing shortest path algorithm is then applied to the graph. This method is highly efficient, as the number of nodes in the transformed graph is not more than the number of cells in the given grid and decreases with the specified path width. However, a shortcoming of this method is the possibility of generating a self-intersecting path which occurs only when the given grid has an extremely skewed distribution of cost values.

Acknowledgements

The author would like to thank the editor, anonymous reviewers, and Mark D. Uyemura for their valuable comments and suggestions, which have enhanced the structure and presentation of this article. Any errors remain, of course, the sole responsibility of the author.

Disclosure statement

No potential conflict of interest was reported by the author.

Supplemental Material

Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13658816.2015.1124435

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 704.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.