13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In vitro inhibitor effect and molecular docking of thiamine (vitamin B1), riboflavin (vitamin B2), and reference inhibitor captopril on angiotensin-converting enzyme purified from sheep plasma

, , &
Received 04 Apr 2024, Accepted 26 Jun 2024, Published online: 10 Jul 2024
 

Abstract

Objective

Angiotensin-converting enzyme (ACE, EC 3.4.15.1) is a very important factor in the regulation of blood pressure. Also, the inhibition of ACE with natural compounds has been a very important research area in the treatment of high blood pressure. ACE was purified and characterized from sheep plasma. Molecular docking studies and the inhibition effect of thiamine, riboflavin, and captopril on ACE were investigated.

Methods

Herein, ACE was purified from sheep plasma by affinity chromatography. The effect of thiamine and riboflavin on ACE was researched. Molecular docking studies were performed to understand the molecular interactions between thiamine, riboflavin, and captopril with ACE.

Results

The purification coefficient was found to be 8636 fold. The binding energy of thiamine, riboflavin, and captopril was found to be -6.7 kcal/mol, -8.1 kcal/mol, and -5.5 kcal/mol, respectively. Thiamine conformed to three conventional hydrogen bonds with ASP:415, HIS:513, and LYS:454. Riboflavin formed four conventional hydrogen bonds with GLN:281, GLU:376, THR:282, and TYR:520. Captopril formed two conventional hydrogen bonds with ARG:124, one conventional hydrogen bond with TYR:62 and ASN:85, and one carbon-hydrogen bond with ASN:66. Molecular docking results showed that thiamine, riboflavin, and captopril interacted with ACE through hydrogen bonding and hydrophobic interactions. Thiamine and riboflavin indicated significant inhibition effects on ACE. The IC50 values of thiamine, riboflavin, and captopril were found as 960.56 µM, 11.02 µM, and 1.60 nM, respectively. Ki values for thiamine, riboflavin, and captopril were determined as 1352.04 µM, 12.30 µM, and 1.06 nM, respectively.

Conclusion

In this work, it was concluded that thiamine and riboflavin may have preventive and therapeutical impacts against high blood pressure with their ACE inhibitor effect. Thiamine and riboflavin showed a lower inhibitory effect with a higher IC50 than captopril. However, when the inhibitory effect of thiamine and riboflavin vitamins is compared to captopril, it is concluded that they may be natural inhibitors with fewer side effects.

Ethical approval

This work involved the chemical analyses of animal sources. No approval of animal use protocols was required.

Author contributions

V.T.: Supervision, Conceptualisation, and Project Administration. V.T., M.H.C., Z.B., and F.C.C.: Data curation, Writing-original draft preparation. M.H.C., V.T., Z.B., and F.C.C.: Performed the experiments. V.T. and Z.B.: Visualisation, Investigation, Writing-review & editing.

Data availability statement

The authors confirm that the data supporting the findings of this study are available within the article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Additional information

Funding

The author(s) reported there is no funding associated with the work ­featured in this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 505.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.