179
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Development of the indirect ring tension fracture test for hot-mix asphalt

, &
Pages 146-171 | Published online: 30 Jun 2014
 

Abstract

Almost all of the current hot-mix asphalt (HMA) fracture tests are considered to be research tools. This paper describes the development of the indirect ring tension (IRT) fracture test for HMA, which was designed to be an effective and user-friendly test that could be used at the Department of Transportation level. Numerical modelling was utilised to calibrate the stress intensity factor formula of the IRT fracture test for various specimen dimensions. The results of this extensive analysis were encapsulated in a single equation. An experimental plan was developed to optimise the test parameters for HMA specimens. The experiment results revealed that the test is highly repeatable, and capable of capturing the variations in the fracture properties of HMA. Moreover, the data from laboratory tests were utilised to estimate the maximum allowable crack lengths for the pavements based on a viscoelastic model.

Acknowledgements

The authors wish to thank Asphalt Institute for providing all the equipment and materials used in this research. The authors also like to thank Mr R. Michael Anderson, the director of research and laboratory services at Asphalt Institute, for his interest in and support of the testing programme. Additionally, the authors wish to thank the University of Kentucky for its support of this work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.