486
Views
11
CrossRef citations to date
0
Altmetric
Scientific papers

Performance of a sustainable asphalt mix incorporating high RAP content and novel bio-derived binder

, , , , ORCID Icon, , , , , & ORCID Icon show all
Pages 812-834 | Received 17 Feb 2019, Accepted 08 Jul 2019, Published online: 25 Jul 2019
 

Abstract

The recent drive to find ways to increase sustainability and decrease costs in asphalt paving has led researchers to find innovative ways to incorporate more recycled materials and bio-derived binders into mixes with varying success. A new novel bio-derived binder made from refined pine chemistry stabilised with a polymer can increase the sustainability of asphalt mixes while maintaining pavement performance. Laboratory performance testing was conducted on asphalt mixes containing 50% Reclaimed Asphalt Pavement (RAP) by mix weight and the novel bio-derived binder. Results show that the bio-derived binder outperforms the conventional 50/70 pen grade binder mixes with respect to resistance to thermal cracking and adequately passes all requirements for pavements with 20-year design loadings of less than 30 million ESALs. This research shows that asphalt mixes containing 50% RAP and a bio-derived binder can be designed to pass performance criteria at low, intermediate, and high temperatures without the need of neat bitumen.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 204.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.