189
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Intermittent patches of turbulence in a stratified medium with stable shear

, &
Article: N20 | Received 23 Jan 2012, Accepted 14 Apr 2012, Published online: 07 Jun 2012
 

Abstract

Direct numerical simulation (DNS) is used to investigate the evolution of intermittent patches of turbulence in a background flow with the gradient Richardson number, Rig , larger than the critical value of 0.25. The base flow consists of an unstable stratified shear layer (Rig <0.25) located on top of a stable shear layer (Rig >0.25), whose shear and stratification are varied. The unstable shear layer undergoes a Kelvin–Helmholtz shear instability that develops into billows. Vortices associated with the billows are pulled into the bottom shear layer and stretched by the local shear into a horseshoe configuration. The breakdown of the horseshoe vortices generates localized patches of turbulence. Three cases with different levels of shear and stratification, but with the same Rig , in the bottom shear layer are simulated to examine the popular hypothesis that mixing is determined by local Rig . In the case with largest shear and stratification, the vortices are less likely to penetrate the bottom layer and are quickly dissipated due to the strong stratification. In the case with moderate shear and stratification, vortices penetrate across the bottom layer and generate turbulence patches with intense dissipation rate. The case with the mildest level of shear and stratification shows the largest net turbulent mixing integrated over the bottom layer. Analysis of the turbulent kinetic energy budget indicates that the mean kinetic energy in the bottom layer contributes a large amount of energy to the turbulent mixing. In all cases, the mixing efficiency is elevated during the penetration of the vortices and has a value of approximately 0.35 when the turbulence in the patches decays.

Acknowledgements

We are grateful for support provided by the NSF (National Science Foundation) OCE-0961184 (program monitor E.C. Itsweire).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.