275
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Incomplete similarity of a plane turbulent wall jet on smooth and transitionally rough surfaces

, , , &
Pages 1076-1090 | Received 02 Dec 2014, Accepted 18 May 2015, Published online: 22 Jun 2015
 

Abstract

This study assesses the hypothesis of incomplete similarity for a plane turbulent wall jet on smooth and transitionally rough surfaces. Typically, a wall jet is considered to consist of two regions: an inner layer and an outer layer. The degree to which these two regions reach equilibrium with each other and interact to produce the property of self-similarity remains an open question. In this study, the analysis of the outer and inner regions indicates that each region is characterised by a half-width which exhibits its own distinct dependence on the streamwise distance x from the slot, and a single self-similar structure for both regions does not exist. More specifically, the inner and outer layers of the wall jet exhibit different scaling laws, which results in two self-similar mean velocity profiles, both of which retain a dependence on the slot height H. As such, incomplete similarity of the wall jet on smooth and transitionally rough surfaces is confirmed by this study. In addition, comparison of the experimental results for the transitionally rough surface with the smooth wall case indicates that the surface roughness modifies the development of the mean velocity profile in both the inner and outer regions, although the effect on the outer region is relatively small and close to the experimental uncertainty.

Acknowledgements

The authors acknowledge the support of the Natural Sciences and Engineering Research Council of Canada (NSERC). The technical assistance of D.M. Deutscher is gratefully appreciated. Mr Matthew Dunn is also acknowledged for leading the development of the experimental facilities.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.