312
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Dynamic gradient models for the sub-grid scale stress tensor and scalar flux vector in large eddy simulation

&
Pages 30-50 | Received 02 Mar 2015, Accepted 06 Aug 2015, Published online: 17 Oct 2015
 

ABSTRACT

A number of dynamic variants of the modulated gradient model (MGM) for the sub-grid scale (SGS) stress tensor and the SGS scalar flux vector are developed and evaluated a posteriori in large eddy simulations of neutral and stably stratified turbulent channel flow. Two dynamic procedures are evaluated: one based on the local equilibrium hypothesis (called local-dynamic models) and one based on the global equilibrium and steady state hypotheses (global-dynamic models). These local-dynamic (LD) and global-dynamic (GD) versions of MGM are found to be much more accurate than the constant coefficient MGM in neutral turbulent channel flow at friction Reynolds numbers of 180 and 590. The constant coefficient MGM and GD-MGM are also found to yield the correct asymptotic behaviour close to the wall, which indicates the suitability of coupling the MGM kernel with the GD procedure. For the SGS scalar flux vector, LD and GD versions of the MGM are evaluated along with LD and GD versions of the recently proposed Smagorinsky-gradient (SGM) and Vreman-gradient (VGM) models. Tests in neutral and stably stratified channel flow at friction Reynolds number of 180 and friction Richardson numbers of 0 and 18 reveal that all six dynamic SGS scalar flux vector models are able to reproduce first-order and second-order turbulent statistics accurately. The simulations help further establish the stability and accuracy of SGM and VGM, which have not been tested previously. None of the dynamic gradient-based SGS scalar flux vector models are found to yield the correct asymptotic behaviour, however, and this issue needs further investigation.

Acknowledgements

N.S. Ghaisas would like to thank Prof. Cristina Archer for support. Some of the simulations were carried out on the University of Delaware's Mills high-performance computing cluster, and is gratefully acknowledged.

Disclosure statement

No potential conflict of interest was reported by the authors.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 146.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.